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By using a first-principles approach based on the Bethe-Salpeter equation, we study the behavior of wave
propagation through a two-dimensional random slab as a function of thickness, L, in the region where L is
much smaller than the localization length. A general two-dimensional vertex function for the ladder diagrams
is derived from the Ward identity. We calculate both the static and the time-resolved transmitted intensities as
functions of L / l, where l is the mean free path. When L is comparable to l, we study the ballistic to diffusive
transition. A sharp crossover is observed when Lc�6l, which is significantly larger than the crossover thick-
ness of Lc�3l found in three dimensions. When L� l, we obtain the extrapolation length in two dimensions,
i.e., ze

2D�0.82l, which is noticeably larger than the previously used value of ze
2D=�l /4 obtained by an ana-

lytical approach.
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I. INTRODUCTION

The wave transport in random media is known to acquire
diffusive behavior due to multiple scattering �1�. Many wave
phenomena in strongly scattering materials, including coher-
ent backscattering, continuous-wave transmission, pulse
propagation, and speckle correlations, are well described by
the diffusion approximation �2–5�. Despite the success and
widespread use of this simple approximation, limitations ex-
ist. One such limitation occurs in thin samples, where the
number of scatterings is insufficient to randomize the phases
and directions of the emerging waves and a crossover to
ballistic transport will occur. In the past, many works have
been devoted to this crossover behavior both experimentally
and theoretically and the particular interest was on the cross-
over thickness below which the diffusion approximation be-
comes invalid �6–17�. Most of these works were done for
three-dimensional �3D� systems and different answers were
found depending on the physical quantities measured. For
examples, the steady state photon transmission measure-
ments �3� and diffusing wave spectroscopy �DWS� experi-
ment �6� have indicated that the transport of photons is dif-
fusive for sample thickness, L, as low as 3–5 mean free
paths, l. In contrast, pulsed optical transmission measure-
ments �7–9� have reported systematic deviations from diffu-
sion theory at much larger values of L / l�8–10. Recently,
ultrasonic pulse transmission experiments in strongly scatter-
ing media consisting of glass beads immersed in water have
been carried out and, at the same time, first-principles calcu-
lations of both the frequency correlation function and the
time-domain profile of the transmitted intensity have been
performed by solving the ladder approximation of the Bethe-
Salpeter equation �14�. Both theory and experiments have
observed an abrupt crossover between ballistic and diffusive
behavior in the peak arrival time after a pulsed excitation

when Lc / l�3. Waves transport through thin slabs of random
media with internal reflection has also been discussed �15�.
The crossover from ballistic to diffusive behavior was found
to occur at Lc / l�3 independent of the presence of internal
reflection. However, when L / l�3, an anomalous diffusion
region has been found, in which the diffusion constant in-
creases with decreasing L. For two dimensions, Tourin et al.
�16,17� have carried out ultrasonic experiments to investigate
the ballistic and diffusive waves in a multiple scattering me-
dium consisting of randomly placed steel rods in water back-
ground. They concluded that the ballistic and diffusive parts
can coexist in a large range of L / l, indicating a large value of
Lc / l. However, the precise value of Lc / l was not reported.
This may be due to the presence of resonance in the pulse
spectrum. In this case, the mean free path becomes frequency
dependent and is peaked at the resonant frequency. An aver-
aging process weighted by the spectrum content is required
to obtain an averaged mean free path. However, the fre-
quency content of the transmitted wave becomes time depen-
dent. This makes the definition of an averaged mean free
path ambiguous.

Besides the ballistic to diffusive transition, the extrapola-
tion length, ze, is an interesting and useful quantity which is
also not well-known in two dimensions. In the diffusive re-
gime, the diffusion approximation works well. However,
when the ratio of L / l is not very large, wave transport can be
sensitive to the value of ze used in the boundary condition of
the diffusion equation and, therefore, an accurate value of ze

is necessary. In 3D, the value of ze
3D has been accurately

determined from the Milne solution as ze
3D / l�0.7104 �18�.

This ratio is greater than the value of 2 /3 obtained by using
an analytical approach based on the flux consideration at the
sample boundary �19�. By using the same approach in 2D, it
can be shown that ze

2D / l=� /4. This number has been used in
the literature �20�. However, the correct value of ze

2D in 2D
should also be obtained from the solution of the energy trans-
port equation in 2D, which may also yield a value greater
than � /4.

In this work, we study both the ballistic to diffusive tran-
sition and the extrapolation length in 2D. For these purposes,
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we calculate both the static and the time-resolved transmitted
intensities of waves passing through a two-dimensional ran-
dom slab as a function of slab thickness, L, by using a first-
principles approach based on the Bethe-Salpeter equation. To
ensure flux conservation, we derive a dynamic 2D vertex
function for the ladder diagrams based on the Ward identity.
In the static limit and the limit of large kl, where k is the
wave vector, our vertex function recovers the previously
known result. When L is comparable to l, we find a sharp
crossover from ballistic to diffusive behavior when Lc�6l,
which is significantly larger than the crossover thickness of
Lc�3l found in 3D. In the case of large L / l, we also inves-
tigate the extrapolation length. We find ze

2D�0.82l, which is
noticeably larger than �l /4 obtained analytically. It should
be pointed out that since all waves in 2D random media are
believed to be localized �21� and the localization length is
predicted as �� l exp��kl /2� �1,22�, in our calculations, we
limit ourselves to the region of kl�2� and L / l�40 so that
L /��0.002. In this case the wave interference effects are
believed to be negligible. The diffusion behavior in 2D
�16,17,23� and 1D �24� has also been studied both experi-
mentally and numerically in the past.

II. THEORY

Consider a plane-wave pulse normally incident on the
front surface �z=0� of a slab of thickness L�0�z�L� con-
taining random scatterers. At time t and position r�, the field
is specified by the time-dependent wave function 	�t ,r��,
which can be written as

	�t,r�� = �2��−1� d
 exp�− i
t�f�
��
�r�� , �1�

where f�
� describes the spectral content of the pulse, and
�
�r�� is the spatial part of the wave function. In order to
obtain useful physical information, we have to consider the
ensemble-averaged quantities. The ensemble-averaged inten-
sity corresponding to Eq. �1� can be expressed as

�		�t,r��	2
 = �2��−2� d
�� d�f�
+�f*�
−�


 ��
+�r���
−
* �r��
exp�− i�t�� , �2�

where � 
 denotes configurational averaging, and the frequen-
cies 
±=
± �� /2� can be written in terms of the center
frequency 
 and the modulation frequency �. Here we have
followed the notations used in Ref. �14� in the study of the
ballistic to diffusive transition in 3D. In the literature, 
 has
been often used to denote the modulation frequency and �
for the center frequency. From Eq. �2�, it is clear that the
ensemble-averaged intensity �		�t ,r��	2
 is given by the Fou-
rier transform of the frequency correlation function
C
�� ,r��= ��
+�r���
−

* �r��
, which is the fundamental quantity
to be determined. In fact, the frequency correlation function
C
�� ,r�� is a special case for the space-frequency correlation

function C̃
�� ;r� ,r���= ��
+�r���
−
* �r���
, which can be ob-

tained from the Bethe-Salpeter equation �1,14�

C̃
��;r�,r��� = ��
+�r��
��
−
* �r���


+� dr�1dr�2dr�3dr�4�G
+�r�,r�1�



 �G
−
* �r��,r�2�
U�r�1,r�2;r�3,r�4�C̃
��;r�3,r�4� .

�3�

Here U�r�1 ,r�2 ;r�3 ,r�4� is the irreducible vertex function.
�G
+�r� ,r�1�
 and �G
−�r�� ,r�2�
 are the ensemble-averaged
Green’s functions, which describe, respectively, the coherent
part of wave propagation from r�1 to r�, and from r�2 to r��.
Under a plane wave incidence, the ensemble-averaged field
��
±�r��
 takes the form of exp�i
±z /v−z /2l�, where l is the
scattering mean free path and v is the phase velocity in the
slab. Since ��
±
 represents the coherent part of the waves
inside the random slab, v should be considered as the effec-
tive medium phase velocity of the random slab �14�. Since
for our purpose only frequency correlation function C
�� ,r��
is needed, we let r��=r� in Eq. �3�. The ensemble-averaged
Green’s function in Eq. �3� has the form of Hankle function
in 2D, i.e.,

�G
±�r�,r�1,2�
 = −
i

4
H0

�1��K±	r� − r�1,2	� , �4�

where K±=
± /v+ i /2l are complex wave vectors. In this
work, for simplicity, we assume the scatterings are pointlike
and isotropic so that l is also the transport mean free path. In
the lowest order approximation, we take l=1/n� as the bare
mean free path, where n is the number density and � is the
total scattering cross section. This approximation corre-
sponds to the ladder approximation in the vertex function U
as required by Ward identity, which takes the following form
�1�:

�+�
+� − �−�
−� = ��G+�
+,r� = r���
 − �G−�
−,r� = r���
�U ,

�5�

where �+ and �− are the self-energies of �G+
 and �G−
. The
left-hand side of Eq. �5� can be expressed as

�+�
+� − �−�
−� = −
2


lv
i . �6�

The vertex function U is thus obtained as

U�
,�� =

−
2


lv
i

�G+�
+,r� = r���
 − �G−�
−,r� = r���

. �7�

Equation �7� is valid in any dimension. For the 3D case,
�G+�
+ ,r�=r���
− �G−�
− ,r�=r���
=−2
 /4�vi, which leads to
the commonly used vertex function in 3D, i.e., U3D=4� / l
�1,14,25�. We note that U3D is independent of 
 and �.
However, in 2D we have
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�G+�
+,r� = r���
 − �G−�
−,r� = r���


= −
 i

4
H0

�1��K+r�

r→0

−
 i

4
H0

�1���K−r�

r→0

=

ln� 	K+	
	K−	�
2�

+
i��+ + �− − ��

2�
, �8�

where �+=ln�K+ / 	K+	� / i, �−=ln�K− / 	K−	� / i. Substituting
back in Eq. �7�, we obtain

U2D =

− 4�
i

lv

ln� 	K+	
	K−	� + i��+ + �− − ��

. �9�

Different from the 3D case, the vertex function in 2D de-
pends on both 
 and �. It possesses the following symmetry
properties: U2D�−
 ,��=U2D�
 ,�� and U2D�
 ,−��
=U2D

* �
 ,��. At �=0 and 
�0, Eq. �9� reduces to

U2D�� = 0� =




lv
1

4
−

�

2�

, � = arctan� v
2l


� . �10�

In the limit of 
l /v=kl�1, Eq. �10� recovers the previously
used vertex function U2D=4k / l=4
 /vl in 2D �26�. Thus the
vertex function shown in Eq. �9� is more general and should
be used in the study of wave dynamics, particularly when kl
is not very large. We will show later that even when kl
�60, the use of U2D=4k / l will give erroneous results, due to
violation of flux conservation.

The vertex function in real space is thus obtained as
U�r�1 ,r�3 ;r�2 ,r�4�=U2D��r�1−r�3���r�1−r�2���r�3−r�4�. With this
form of U�r�1 ,r�3 ;r�2 ,r�4�, Eq. �3� generates a sum of ladder
diagrams, which represents the multiple scattering of waves
without interferences of different paths, and turns into the
well-known radiative transfer equation. Due to the symmetry
in our problem, C
�� ,r�� is only dependent on the z coordi-
nate. Thus we have

C
��,z� = exp� i�z

v
−

z

l
� +

U2D

16
� dz1C
��,z1�H�z − z1� ,

�11�

where

H�z − z1�

=� dy1H0
�1��K+�y1

2 + �z − z1�2�H0
�1���K−�y1

2 + �z − z1�2� .

�12�

The first term in Eq. �11� represents the coherent contribu-
tion, while the second term describes the scattered wave con-
tribution. Equation �11� takes a similar form of the Milne
equation and can be solved numerically to obtain the fre-
quency correlation function C
�� ,z� as a function of z, 
,

and �, given a set of parameters v, l, and L. After C
�� ,z� is
solved, we can substitute it back into Eq. �2� to calculate the
ensemble-averaged intensity �		�t ,z�	2
. It should be pointed
out that Eqs. �11� and �12� exhibit the 
 dependence in both
the functions U2D and H0

�1�. However, the corresponding
equations in 3D, i.e., Eqs. �8� and �9� of Ref. �14� do not
have 
 dependence. Thus it is interesting and important to
see if our results depend on the choice of 
. In our calcula-
tions below, we choose two different values of 
, i.e., kl
=2� and kl=20�. According to �� l exp��kl /2� �1,22�, the
corresponding localization lengths are �=1.9
104l and 7.3

1042l, which are much larger than the values of L used in
our calculations so that the use of ladder diagrams is justi-
fied.

III. NUMERICAL RESULTS AND DISCUSSION

In order to study the ballistic to diffusive transition, we
calculate the time-resolved transmitted intensity I�L , t� at the
output surface at different ratios of L / l. We first calculate the
frequency correlation function C
�� ,L� by numerically solv-
ing Eq. �11�. In Fig. 1, we plot the part of the correlation

function C̄
�� ,L�=C
�� ,L�−exp�i�L /v−L / l� correspond-
ing to the scattered waves, as a function of �, with center
frequency of kl=20� for slabs of thickness L=6l and 10l,
respectively. The solid line and the long-dashed line denote

the real and imaginary part of C̄
�� ,L� for L=6l, and the
dashed line and dotted line denote the real and imaginary

part of C̄
�� ,L� for L=10l. Similar to the 3D case, C̄
�� ,L�
is a decreasing and oscillating function of 	�	. When

slab thickness L is increased, the envelope of C̄
�� ,L�
becomes narrower. Then, we calculate I
�L , t�
=�d�f�
+�f*�
−�C̄
�� ,L�exp�−i�t� by numerical integra-

tion, with f�
±�=1 in the envelope range of C̄
�� ,L�. In

FIG. 1. Correlation function C
�� ,L�−exp�i�L /v−L / l� as a
function of � for L=6l �solid line: real part; long dashed line:
imaginary part� and L=10l �dashed line: real part; dotted line:
imaginary part�, with kl=20�.
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Fig. 2, the I
�L , t� for a slab of L=6l with kl=20� and 2�
are plotted as solid and dashed lines, respectively. We note
that the two functions of I
�L , t� are almost identical, al-
though their 
’s are ten times different. In fact, this is true
for all the quantities we have studied. Thus, in the following,
we show only the results of kl=20� and omit the subscript 

in I
�L , t�. In Fig. 2 we also find that at L=6l, the scattered
intensity I�L , t� consists of two peaks in time. One peak is
ballistic-like, in the sense that it is narrow and sharp, and
arrives at the output surface at the exact time L /v. The other
peak is due to the diffusive waves, which are scattered in
random direction and thus arrive later. The coexistence of
ballistic-like peak and the peak of diffusive waves has been
found in the time-of-flight experiments �16,17�. Physically, if
we consider the multiple scattering process on an effective
medium basis, the ballistic-like peak in Fig. 2 corresponds to
the part of the scattered waves which are forward scattered
along the propagation path in the effective medium of the
slab. Since the coherent wave intensity, which is not shown
in Fig. 2, decays exponentially as exp�−L / l�, the ballistic-
like peak formed by forward scattered waves will overtake
the coherent wave intensity and determine the ballistic-
diffusive transition.

In Fig. 3, we plot the peak arrival time tp of the scattered
intensity as a function of slab thickness L in log-log scale.
Two linear segments are clearly seen. The one with L�6l
has a slope of one, showing the ballistic transport with tp
=L /v. When L�6l, the other segment shows a slope of two,
indicating a diffusive transport with tp�L2. Thus a sharp
crossover is also found in 2D, but with a crossover thickness
Lc�6l, which is twice that found in 3D. We should mention
again that the results of kl=2� are indiscernible from that of
kl=20� shown in Fig. 3.

When L� l, Eq. �11� allows us to study the extrapolation
length in 2D. Before presenting our numerical results, let us
summarize some known analytical results derived from the
diffusion theory. The static diffusion equation takes the form

− D�2I�z� = ��z − zp� , �13�

where D is the diffusion constant, I�z� is the static intensity,
and zp represents the penetration length of the incident wave.
This equation is solved with the boundary conditions I�−ze�
= I�L+ze�=0, where ze is the extrapolation length to be de-
termined. The solution of Eq. �13� for z�zp is expressed as

I�z� =
�zp + ze��L + ze − z�

D�L + 2ze�
, z � zp. �14�

Thus I�z� is linearly decaying for z�zp and extrapolating to
z axis at z=L+ze. At z=L, the inverse of the intensity I�L�
takes the form

1

I�L�
=

D�L + 2ze�
�zp + ze�ze

, �15�

which is linearly dependent on L and extrapolating to L axis
at L=−2ze. Here, we solve Eq. �11� in the static limit and use
the so-obtained I�z� and I�L� in Eqs. �14� and �15�, respec-
tively, to determine the extrapolation length ze

2D in 2D.
In the static limit, we use a plane wave incidence contain-

ing a single frequency 
. Thus �		�t ,z�	2
= �2��−2C
��
=0,z�. In Fig. 4, we plot the scattered wave intensity distri-
butions I�z�=C
��=0,z�−exp�−z / l� for L=5l, 10l, and 20l,
as solid, long-dashed, and dashed lines, respectively, under
an incident plane wave with kl=20�. When the slab thick-
ness L becomes large enough, an almost linearly decaying
region appears inside the slab, indicating domination of dif-
fusive waves in that region. This is seen more clearly in the
inset of Fig. 4, which describes the second derivatives of I�z�
with respect to z. Here we also notice that near the output
surface of the slab, the linear decay is lost. So the transmitted
intensity I�L� will deviate slightly from the diffusion result.
Nevertheless, Eq. �15� provides a convenient way to deter-
mine ze �3�. In Fig. 5, we plot the inverse of the intensity at
the output surface of the slab, 1 / I�L�, as a function of slab

FIG. 2. The solid and dashed lines describe I
�L=6l , t� for kl
=20� and kl=2�, respectively.

FIG. 3. The peak arrival time tp of scattered intensity I�L , t� as a
function of L. The data for L�6l and L�6l are fitted separately as
the dashed lines.
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thickness L for kl=20�. The inset shows the data for L
�10l. It is seen that 1 / I�L� becomes a nearly linear function
of L when slab thickness L�6l. By extrapolating the data of
1 / I�L� at large L’s to the L axis, we obtain the extrapolation
length ze

2D�0.8184l for kl=20�. In Fig. 5, we also plot the
results of 1 / I�L� calculated by using U2D=4k / l by open
circles. In this case, 1 /L�l� increases exponentially with L.
Thus it is clear that the use of vertex function U2D=4k / l
violates the flux conservation and gives rise to a behavior of
an absorptive medium. For the case of kl=2�, we obtain a
similar value ze

2D�0.8206l.
As we have mentioned before that I�z� loses its linear

decay near the boundary. This might make Eq. �15� invalid.

In order to check this point, we recalculate ze
2D by using Eq.

�14�. Another disadvantage of the previous calculation is that
the coherent source term exp�−z / l�, though decaying expo-
nentially, exists inside the whole slab. In order to minimize
the effects of the coherent source, we use a delta function-
like source, i.e.,

	�	
0
�z�
	2 = �1000l , 0 � z � 0.001l

0, z � 0.001l
� �16�

instead of the exponentially decaying source in Eq. �11�.
Now, in order to obtain the extrapolation length, we take the
derivative of I�z� at z as the tangent slope and extrapolate the
tangent line to the z axis at zt. Then, according to Eq. �14�,
the extrapolation length can be determined from ze

2D=zt−L if
the tangent line is taken at z in the region dominated by
diffusive waves, i.e., I�z� is linear around z. In Fig. 6�a�, we
plot the intensity distribution in a slab of L=10l for a fre-
quency of kl=20�. The corresponding zt−L as a function of
z is plotted in Fig. 6�b�. The flat region indicates the region
dominated by diffusive waves. Here we simply choose the
maximum zt−L around the center of the flat part as the final
extrapolation length. In Fig. 7 we plot the obtained ze

2D at
different slab thicknesses for kl=20�. It is found that the
extrapolation length saturates quickly to ze

2D�0.8183l as L
�10l. For the case of kl=2�, we find ze

2D�0.8206l. These
numbers are almost identical to those obtained from Eq. �15�.
Thus we can conclude that ze

2D�0.82l. Our result is notice-
ably larger than the previously used value ze

2D=�l /4
�0.785l obtained by an analytical approach.

Finally, as a test of our numerical approach in the deter-
mination of the extrapolation length, we have also performed

FIG. 4. Scattered wave intensity distribution I�z� under a plane
wave incidence of kl=20�, for slabs of thickness L=5l �solid line�,
10l �long-dashed line�, and 20l �dashed line�. The inset graph de-
notes the corresponding d2I�z� /dz2.

FIG. 5. The inverse of scattered intensity I�L�−1 are plotted in
closed circles, as a function of the slab thickness L, under a plane
wave incidence of kl=20�. The dashed line is a linear fit for L
�15l. The open circles denote the result calculated by using the
vertex function U2D=4k / l. The inset graph shows data for L�10l.

FIG. 6. �a� Intensity distribution I�z� under an approximate point
source ��z� with kl=20�; �b� zt denotes the intersection value of the
tangent line of I�z� taken at z and the z axis. ze=zt−L is chosen as
the maximum zt−L for z inside the region of diffusive waves.
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the similar calculations based on the Bethe-Salpeter equation
for 3D slabs �14�. In Fig. 8 we plot the numerical results of
1 / I�L� with a plane wave incidence on a 3D slab of thickness
L. From which we find ze

3D�0.7112l. This number is very
close to 0.7104l obtained from the Milne solution. This
shows the reliability of our 2D results presented here.

IV. CONCLUSION

In this work, we have studied the wave transporting be-
havior through a 2D random slab by using a first-principles
approach based on the Bethe-Salpeter equation. A general 2D
vertex function for the ladder diagrams has been derived
from the Ward identity. This allows us to calculate correctly
the static and dynamic transmitted intensities. When the slab
thickness L is comparable to the mean free path l, we found
an abrupt crossover from the ballistic to diffusive behavior

when Lc�6l. This number is much larger than Lc�3l found
in 3D. In the transition region, the ballistic-like peak and the
peak of diffusive waves coexist in the time-domain profile.
This is consistent with the experimental observation in ultra-
sonic measurements. In the diffusive regime, when L� l, we
have studied the extrapolation length and obtained ze

2D

�0.82l in 2D, which is noticeably larger than the previously
used value �l /4 obtained by analytical approach. The above
results are insensitive to the choice of the center frequency as
long as the localization length is much greater than the slab
thickness.
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